Module Control.Semigroupoid

Introduction of the semigroupoid.

Imports

Table of Content

Definitions

class Semigroupoid f

Formally, a semigroupoid consists of

such that the following axiom holds:

associativity
if f : A → B, g : B → C and h : C → D then h • (g • f) = (h • g) • f.

Known Instances

->

Member Functions

Semigroupoid f ⇒ f b c → f a b → f a c
infixr  16

morphism composition

<<<Semigroupoid f ⇒ f b c → f a b → f a c
infixr  1

Right-to-left composition. This is the same a ordinary composition with Semigroupoid.•.

>>>Semigroupoid f ⇒ f a b → f b c → f a c
infixr  1

Left-to-right composition

Instances

instance Semigroupoid ->

The semigroupoid of Frege values where morphisms are functions.

Member Functions

∷ (𝖆→𝖈) → (𝖇→𝖆) → 𝖇 → 𝖈
infixr  16

function composition

Functions and Values by Type

(𝖆→𝖈) → (𝖇→𝖆) → 𝖇 → 𝖈

Semigroupoid_->.•

Semigroupoid f ⇒ f a b → f b c → f a c

>>>

Semigroupoid f ⇒ f b c → f a b → f a c

<<<, Semigroupoid.•

Valid HTML 4.01 Strict